Search results for "Von Hippel–Lindau tumor suppressor"
showing 3 items of 3 documents
Detection of a germline mutation and somatic homozygous loss of the von Hippel-Lindau tumor-suppressor gene in a family with a de novo mutation
1996
von Hippel-Lindau (VHL) disease is a pleiotropic disorder featuring a variety of malignant and benign tumors of the eye, central nervous system, kidney, and adrenal gland. Recently the VHL gene has been identified in the chromosomal region 3p25-26. Prognosis and successful management of VHL patients and their descendants depend on unambiguous diagnosis. Due to recurrent hemangioblastomas, a29-year-old patient without familial history of VHL disease was diagnosed to be at risk for the disease. Histopathological examination of a small renal mass identified a clear cell tumor with a G1 grading. Genetic characterization of the germline and of the renal tumor was performed. Polymerase chain reac…
Tracheal development and the von Hippel-Lindau tumor suppressor homolog in Drosophila.
2000
von Hippel-Lindau disease is a hereditary cancer syndrome. Mutations in the VHL tumor suppressor gene predispose individuals to highly vascularized tumors. However, VHL-deficient mice die in utero due to a lack of vascularization in the placenta. To resolve the contradiction, we cloned the Drosophila VHL homologue (d-VHL) and studied its function. It showed an overall 50% similarity to the human counterpart and 76% similarity in the crucial functional domain: the elongin C binding site. The putative d-VHL protein can bind Drosophila elongin C in vitro. During embryogenesis, d-VHL is expressed in the developing tracheal regions where tube outgrowth no longer occurs. Reduced d-VHL activity (u…
The von Hippel-Lindau tumor suppressor gene
1997
Abstract The von Hippel-Lindau (VHL) disease is an inherited tumor susceptibility syndrome featuring a high variety of benign and malignant tumors. The gene has been localized and cloned at 3p25-26. Recent functional analysis defined the VHL gene product as an inhibitor of the transcription elongation process. Its possible involvement in the vascularization process may explain the histologic features of VHL tumors providing insight into basic mechanism of tumorigenesis. Direct genetic testing is available for patients affected with VHL. Seventy to eighty percent of the germline mutations expected could be detected. As first geno/phenotype correlations have been established, we are now begin…